
Powershell CGI Wrapper
Install PowerShell
Install Powershell 5.1 from “Turn Windows Features On” under “Control Panel” and “Programs and Features”
Install PowerShell 7.0+:
Installing PowerShell on Windows - PowerShell | Microsoft Learn
To install PowerShell on Windows, use the following links to download the install package from GitHub.
· PowerShell-7.2.6-win-x64.msi
· PowerShell-7.2.6-win-x86.msi

On Linux:
Install PowerShell on Linux - PowerShell | Microsoft Learn

Install MS SQL Server (Full, Express, or Developer)
SQL Server Downloads | Microsoft
Install Internet Information Services (Web App Server on Windows) on Windows 10+ Pro
Follow this Guide:
Or install IIS Express:
Download Internet Information Services (IIS) 10.0 Express from Official Microsoft Download Center

Install Apache Web Server

On Windows:

On Linux:

On IIS on Windows, add CGI and handler to process Powershell scripts and render web output
Set Handler Script Mapped to:
D:\dev\psroot\Gigaframe.Com.Powershell.CGI\Release\Gigaframe.Com.PowerShell.CGI.exe %s %s
The basis for this is a mapping is:
c:\windows\system32\WindowsPowerShell\v1.0\powershell.exe -NoLogo -NoProfile -NonInteractive -ExecutionPolicy Unrestricted -File %s %s

But but requires some additional logic to process CGI requests for Powershell to handle.

The wrapper follows normal CGI structure with env vars to call and parse, and content to read upon POST.

Wrapper:
using System;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Configuration;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Gigaframe.Com.Powershell.CGI
{
 class Program
 {

 static void Main(string[] args)
 {
 var process = new Process();
 process.StartInfo = new ProcessStartInfo
 {
 FileName = "powershell.exe",
 Arguments = "-NoLogo -NoProfile -ExecutionPolicy Unrestricted -File " + String.Join(" ", args),
 UseShellExecute = false,
 RedirectStandardInput = true,
 RedirectStandardOutput = true,
 RedirectStandardError = true,
 CreateNoWindow = true
 };

 process.OutputDataReceived += (sender, e) =>
 {
 Console.WriteLine(e.Data);
 };

 process.ErrorDataReceived += (sender, e) =>
 {
 Console.Error.WriteLine(e.Data);
 };

 process.Start();
 process.BeginOutputReadLine();
 process.BeginErrorReadLine();

 string inputTxt = "";

 int contentLength = Convert.ToInt32(System.Environment.GetEnvironmentVariable("CONTENT_LENGTH"));
 if (contentLength > 0)
 {
 char[] buffer = new char[contentLength];
 Console.In.Read(buffer, 0, contentLength);
 inputTxt = new string(buffer);
 process.StandardInput.Write(inputTxt);
 }

 process.WaitForExit();
 }
 }
}

D:\dev\psroot\cgi-wrapper-dotnet\Powershell_CGI\Powershell_CGI\bin\Debug\Powershell_CGI.exe %s %s

[image: Graphical user interface, text, application, email

Description automatically generated]

[image:]
D:\dev\psroot\index.ps1 : File D:\dev\psroot\index.ps1 cannot be loaded. The file D:\dev\psroot\index.ps1 is not digitally signed. You cannot run this script on the current system. For more information about running scripts and setting execution policy, see about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170. At line:1 char:1 + D:\dev\psroot\index.ps1 + ~~~~~~~~~~~~~~~~~~~~~~~ + CategoryInfo : SecurityError: (:) [], PSSecurityException + FullyQualifiedErrorId : UnauthorizedAccess

Trying:
PS>Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Scope "IIS AppPool\psroot"
[image: Text

Description automatically generated]

To set
PS> Set-ExecutionPolicy unrestricted
Can be a problem to open all security.
The idea is to set the user specifically with execution policy.
-ExecutionPolicy -Bypass is best set.
FileName = "powershell.exe",
Arguments = String.Join("-Executionpolicy -Bypass ", args),

[image: Graphical user interface, text, application, email

Description automatically generated]

[image: Graphical user interface, text, application

Description automatically generated]

[image: Graphical user interface, text, application

Description automatically generated]

[image: Graphical user interface, text, application

Description automatically generated]
[image: Graphical user interface, text, application

Description automatically generated]

[image: Text

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

[image: Text

Description automatically generated]

http://learn.iis.net/page.aspx/381/aspnet-20-breaking-changes-on-iis-70/
Console.WriteLine("HTTP/1.1 200 OK");
 Console.WriteLine("Content-Type: text/html");
 Console.WriteLine("");
 string userName = System.Security.Principal.WindowsIdentity.GetCurrent().Name;
 Console.WriteLine("User: " + userName);

User: NT AUTHORITY\IUSR D:\dev\psroot\index.ps1 : File D:\dev\psroot\index.ps1 cannot be loaded. The file D:\dev\psroot\index.ps1 is not digitally signed. You cannot run this script on the current system. For more information about running scripts and setting execution policy, see about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170. At line:1 char:1 + D:\dev\psroot\index.ps1 + ~~~~~~~~~~~~~~~~~~~~~~~ + CategoryInfo : SecurityError: (:) [], PSSecurityException + FullyQualifiedErrorId : UnauthorizedAccess

Change to classic pipeline

[image: Graphical user interface, text, application

Description automatically generated]

This because your site is set as annonymous. IUSR is used for annonymous sites.
Best way to do is create a custom user name and password for this database.
Add the connection string in your web.config file.
Use the custom connection string in your page load event to access your database.

Trying Windows auth

[image: Graphical user interface, text, application

Description automatically generated]
Getting:
User: METATRON\mainf Arg: D:\dev\psroot\index.ps1 D:\dev\psroot\index.ps1 : File D:\dev\psroot\index.ps1 cannot be loaded. The file D:\dev\psroot\index.ps1 is not digitally signed. You cannot run this script on the current system. For more information about running scripts and setting execution policy, see about_Execution_Policies at https:/go.microsoft.com/fwlink/?LinkID=135170. At line:1 char:1 + D:\dev\psroot\index.ps1 + ~~~~~~~~~~~~~~~~~~~~~~~ + CategoryInfo : SecurityError: (:) [], PSSecurityException + FullyQualifiedErrorId : UnauthorizedAccess

D:\dev\psroot\cgi-wrapper-dotnet\Powershell_CGI\Powershell_CGI\bin\Debug\Powershell_CGI2.exe %s %s

c:\windows\system32\WindowsPowerShell\v1.0\powershell.exe -NoLogo -NoProfile -NonInteractive -ExecutionPolicy Unrestricted -File %s

How to setup CGI in IIS 10 on Windows Server 2019
[image: MTurner]

MTurner [image: Micro Focus Employee]
0 Likes
over 1 year ago
1. In the Start menu, click the Server Manager tile, and then click OK.
2. In Server Manager, select Dashboard, and click Add roles and features.
3. In the Add Roles and Features Wizard, on the 'Before You Begin' page, click Next.
4. On the 'Select Installation Type' page, select Role-based or Feature-based Installation and click Next
5. On the 'Select Destination Server' page, select a server from the server pool, select the server, and click Next.
6. On the 'Select Server Roles' page, select Web Server (IIS).

[image: Graphical user interface

Description automatically generated]
7. Click next 3 more times to reach the 'Role Services' page.
8. Expand 'Web Server' > 'Application Development' and check the 'CGI' box. Click next.
9. On the 'Installation Progress' page, confirm that the installation of the Web Server (IIS) role and required role services completed successfully, and then click Close.
10. To verify that IIS installed successfully, type the following into a web browser:
http://localhost
The default IIS Welcome page should appear.
11. Start 'Internet Information Services (IIS) Manager' and click the "Default Web Site" in the Connections Panel (left).
12. Double click the "Handler Mappings" icon in the Home panel (center).
[image: Graphical user interface, text, application, email

Description automatically generated]

13. Double click the "CGI-exe" item and an "Edit Script Map" pop-up window will appear.
14. Type '*.acu' in the "Request path" field.
15. Type C:\PathTo\AcuGT\bin\wrun32.exe -f %s in the "Executable" field.

[image: Graphical user interface, text, application, email

Description automatically generated]

16. Click "OK" to close the "Edit Script Map" pop-up window.
17. This will trigger an "Edit Script Map" question asking to allow this ISAPI extension. click "Yes".
18. Right click on the CGI-exe entry that was edited in the previous step and select 'Edit feature permissions'.
19. Make sure the 'Execute' check box is enabled then click OK.

[image: Graphical user interface, text, application

Description automatically generated]
20. At this point, follow the setup instructions for the cgi/oscars.acu sample program.

I'm trying to use PowerShell as a CGI binary from IIS Express. I got it to work, but with a silly work-around that I don't particularly like. I'd like to understand why that work-around is needed.
Here's a simple cgi.ps1 file that I'm using to try this out:
"HTTP/1.1 200 OK`r`nContent-Type: text/plain`r`n`r`n"

Get-ChildItem env:
Along with this web.config file:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <system.webServer>
 <handlers>
 <add name="PowerShell CGI" path="*.cgi" verb="GET,HEAD,POST" modules="CgiModule" scriptProcessor=""%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe" -NoLogo -NoProfile -NonInteractive -ExecutionPolicy Unrestricted -File C:\Users\Nikhil\Documents\GitHub\PowerShellCGI\App\cgi.ps1"/>
 </handlers>
 </system.webServer>
</configuration>
Then, after starting IIS Express in this directory, and navigating to http://localhost:8080/hello.cgi, I get an error:
HTTP Error 502.2 - Bad Gateway
The specified CGI application misbehaved by not returning a complete set of HTTP headers. The headers it did return are "".
I had a look with Process Monitor, and powershell.exe does, in fact, launch with the correct arguments. The IIS Express trace log files reveal an exit code of 0, but nothing in the output stream. The weird thing is, when launched from IIS Express, powershell.exe never even reads my ps1 file; I can see the file being read if I manually use the same command line while capturing events with Process Monitor.
Next, I tried to see if a plain cmd.exe batch script could be used as a CGI script. That works just fine; here's the simple cgi.cmd that I used:
@echo off
echo HTTP/1.1 200 OK
echo Content-Type: text/plain
echo.
echo Hello, World!

Hmm... What if I start powershell.exe from within the cgi.cmd script? That didn't work either -- all of the output from the cmd script gets returned to IIS Express; the PowerShell output is still lost somewhere.
However, what's interesting is that when I did this (call PowerShell from the cmd script), there is a PowerShell window that flashes on every page refresh. So it looks like PowerShell does execute my script, just in a new window, so the stdin/stdout is not connected to the CGI in IIS.
What if I use start /b powershell.exe ... in the cmd script? That didn't make a difference.
What if I set system.webServer/cgi/createCGIWithNewConsole = true in IIS Express configuration? That didn't work either, but it did have the effect of having a PowerShell console pop up with every request.
The Workaround
I figured the issue is that powershell.exe wants a console to itself, and when it starts a new console, the input and output redirection is no longer hooked up to the new console.
This is how I finally got it to work: I wrote a thin wrapper that launches powershell.exe, and redirects stdio, stdout, and stderr. Here's the complete Program.cs:
using System;
using System.Diagnostics;

namespace PowerShell_CGI
{
 class Program
 {
 static void Main(string[] args)
 {
 var process = new Process();
 process.StartInfo = new ProcessStartInfo
 {
 FileName = "powershell.exe",
 Arguments = String.Join(" ", args),
 UseShellExecute = false,
 RedirectStandardInput = true,
 RedirectStandardOutput = true,
 RedirectStandardError = true,
 CreateNoWindow = true
 };

 process.OutputDataReceived += (sender, e) =>
 {
 Console.WriteLine(e.Data);
 };

 process.ErrorDataReceived += (sender, e) =>
 {
 Console.Error.WriteLine(e.Data);
 };

 process.Start();
 process.BeginOutputReadLine();
 process.BeginErrorReadLine();

 process.StandardInput.Write(Console.In.ReadToEnd());

 process.WaitForExit();
 }
 }
}

Now, with this line in my web.config, everything works just fine:
<add name="PowerShell-CGI" path="*" verb="GET,HEAD,POST" modules="CgiModule" scriptProcessor="C:\Users\Nikhil\Documents\GitHub\PowerShellCGI\App\PowerShell-CGI.exe -NoLogo -NoProfile -NonInteractive -ExecutionPolicy Unrestricted -File C:\Users\Nikhil\Documents\GitHub\PowerShellCGI\App\cgi.ps1" />

Handler Script Map:
c:\windows\system32\WindowsPowerShell\v1.0\powershell.exe -NoLogo -NoProfile -NonInteractive -ExecutionPolicy Unrestricted -File %s

My question is: why is this silly workaround needed? My program is simply executing powershell.exe with the same arguments, the same stdio, the same stdout, and the same stderr that it gets. I suspect that it might have to do with the CreateNoWindow flag; but isn't start /b doing the same thing? How come my little wrapper program can redirect input and output from powershell.exe just fine, but the CGI module in IIS Express cannot?
Corollary question: how can I use powershell.exe as a CGI binary, without any hacks to make it work? I'd like to see it work as simply as cmd.exe does.
c#powershelliiscgiiis-express
Share
Improve this question
Follow
edited May 18, 2014 at 22:29
asked May 18, 2014 at 21:50

[image: user avatar]

Nikhil Dabas
2,29322 gold badges1717 silver badges1818 bronze badges
· A couple of ideas: (1) Add this to your PS script [System.Diagnostics.Debug]::Write('got here'), and see if that message appears in Sysinternals DbgView.exe. That will tell you if your script is actually running. (2) Could it be that IIS is running the x86 version of PS? Trying doing Set-ExecutionPolicy in both the x64 and x86 versions of PS.
– dan-gph
 May 19, 2014 at 1:45
· Oh, I see you are setting the execution policy in the command line.
– dan-gph
 May 19, 2014 at 2:01
· More ideas (I'm just throwing ideas out there): Your script will be outputting the text in 16bit unicode I think, but the browser might be expecting an 8bit encoding. Also, you could try connecting to localhost:8080 with PuTTY in telnet mode, and see what comes back.
– dan-gph
 May 19, 2014 at 2:16
· Thanks for the ideas! 1. I already tried adding in a write to file command in my script. Runs fine when executed directly; never runs when run from inside IIS Express. Like I mentioned, ProcMon shows that the script file isn't even read when IIS Express calls powershell.exe; it is read when run directly. 2. Execution policies are set on the cmd line, like you noticed. 3. IIS Express gets nothing at all. I tried sending various kinds of junk, and IIS Express reports what it got, so it's not a Unicode/8-bit issue.
– Nikhil Dabas
 May 19, 2014 at 11:54
· And for #4: I see a nicely formatted IIS HTTP error page in the browser, so I don't think connecting via PuTTY will return anything else.
– Nikhil Dabas
 May 19, 2014 at 11:59
Add a comment
[bookmark: tab-top]1 Answer
Sorted by:

[bookmark: 50333530]4

[image: A screenshot of a computer

Description automatically generated]

[image: Graphical user interface, application

Description automatically generated]

'HTTP Error 502.2 - Bad Gateway - The specified CGI application misbehaved...' when launching Controller from Windows 2008 website
Troubleshooting

Problem
User launches Controller via website (typically via http://servername/ibmcognos/controllerbin/ccr.exe if using Controller 10.x). User receives error message inside Internet Explorer.
Symptom
Server Error in Application "DEFAULT WEB SITE"Internet Information Services 7.5
Error Summary
HTTP Error 502.2 - Bad Gateway
The specified CGI application misbehaved by not returning a complete set of HTTP headers. The headers it did return are "".
Detailed Error Information
Module CgiModule
Notification ExecuteRequestHandler
Handler CGI-exe
Error Code 0x00000000
Requested URL http://servername:80/ibmcognos/controllerbin/ccr.exe
Physical Path C:\Program Files (x86)\ibm\cognos\c10\webcontent\ccr\ccr.exe
Logon Method Anonymous
Logon User Anonymous
Most likely causes:
•The CGI process was shut down or terminated unexpectedly before it finished processing the request.
•The CGI process has a flaw and does not return a complete set of HTTP headers.
Things you can try:
•Check the event logs on the system to see whether the CGI process is shutting down unexpectedly.
•Troubleshoot the CGI application to determine why it is not sending a complete set of HTTP headers.
Links and More InformationThis error occurs when the CGI process handling the request exits before it finishes sending the response to IIS.
Cause
TIP: The message "The specified CGI application misbehaved" is generic - there are multiple possible causes for this error.
· For more examples, see separate IBM Technote #1345245.

This Technote specifically relates to the scenario where the cause is that the IIS Handler "CGI-exe" is enabled (for the virtual directory 'controllerbin')
Environment
Controller application server based on Windows 2008 Server.
Resolving The Problem
Disable the IIS handler "CGI-exe" for the virtual directory 'controllerbin'.
Steps:
1. Logon to the Controller application server as an administrator
2. Launch "Internet Information Services (IIS) Manager"
3. Select/highlight the virtual directory "controllerbin"
4. On the right-hand side, double-click on "Handler Mappings"
5. Right-click on "CGI-exe" and choose "Remove"
Related Information
1345245 - ** Troubleshooting ** 'CGI Error - The specif

** Troubleshooting ** 'CGI Error - The specified CGI application misbehaved' when launching Controller
Troubleshooting

Problem
User launches Controller via website (typically via http://servername/cognos8/controllerbin/ccr.exe. User receives error message inside Internet Explorer.
Symptom
Error - Microsoft Internet Explorer
CGI Error
The specified CGI application misbehaved by not returning a complete set of HTTP headers.
Cause
The error "The specified CGI application misbehaved" is generic - there are several potential causes for this/similar message:
· Scenario #1 - Permissions for the IIS website's virtual directory 'ControllerBin' are set incorrectly.
· For example, they are incorrectly configured to allow 'Scripts and Executables' (rather than the correct 'Scripts Only' value, as described in the installation documentation).
· Scenario #2 - The IIS Handler "CGI-exe" is enabled (for the virtual directory 'controllerbin')
· For more details, see separate IBM Technote #1506702.
· Scenario #3 - Microsoft security (e.g. Windows 2003 patches) stopping CGI processes from working.
· For more details, see separate IBM Technote #1618592.
Resolving The Problem
Scenario #1
Modify the permissions for the /Cognos8/ControllerBin virtual directory to 'Scripts Only'.

Steps:
1. Logon to the relevant Controller application server as an administrator
2. Right-click on 'My Computer' and choose 'manage'
3. Expand 'Services and Applications'
4. Expand 'Internet Information Services (IIS) Manager'
5. Expand 'Web Sites' - 'Default Web Site' - 'Cognos8'
6. Right-click on virtual directory 'controller' and choose 'properties'
7. Inside the box 'Execute permissions' change the value to 'Scripts only'
8. Click OK

Scenario #2
See separate IBM Technote #1506702.

Scenario #3
Convert Controller report server to use ISAPI (not CGI).
· See separate IBM Technote #1618592.
Related Information
1618592 - "CGI Error - The specified CGI application mi
Historical Number
1018379

Enable Perl on IIS
Would you like to learn how to install IIS and enable the Perl CGI feature on a computer running Windows? In this tutorial, we are going to show you how to enable the Perl CGI feature on the IIS server.
• Windows 2012 R2
• Windows 2016
• Windows 2019
• IIS
• Perl
Windows Tutorial:
On this page, we offer quick access to a list of Windows tutorials.
· Windows Tutorial
· IIS - Installation
· IIS - PHP installation
· IIS - Enable HTTPS
· IIS - Redirect HTTP to HTTPS
· IIS - Redirect a URL
· IIS - Redirect the error 404
· IIS - Virtualhost
· IIS - Installing the Let's Encrypt certificate
· IIS - Enable HSTS
· IIS - Basic authentication
· IIS - NTLM authentication
· IIS - Digest authentication
· IIS - Python CGI
· IIS - Enable ASP
· IIS - Enable ASPX
· IIS - URL Rewrite module
· IIS - Modsecurity installation
· IIS - Web Platform installation
· IIS - Blocking direct access to image
· IIS - Prevent image hotlinking
· IIS - Redirect Hotlinking
· IIS - Add a header
· IIS - Disable the cache
· IIS - Configuring the browser cache policy
· IIS - Change the server identification header
· IIS - Disable directory browsing
· IIS - FTP Server
· IIS - Secure FTP Server
· IIS - Verify the version
· IIS - Monitoring via Zabbix
· IIS - Limiting concurrent connections
· IIS - Blocking an IP address
· Windows - Blocking an IP address
Tutorial Windows - IIS Installation
Open the Server Manager application.
Access the Manage menu and click on Add roles and features.

On the Server Roles screen, select the option named: Web Server IIS.
Click on the Next button.

On the following screen, click on the Add features button.

On the Features screen, click on the Next button.

On the Role service screen, click on the Next button.

On the Summary screen, click on the Install button.

Congratulations! You have finished the IIS service installation on a computer running Windows.
Tutorial IIS - Enabling the CGI feature
Open the Server Manager application.
Access the Manage menu and click on Add roles and features.

On the Server Roles screen, expand the entry named: Web Server IIS.
Access the Application development menu and select the option named: CGI
Click on the Next button.

On the Features screen, click on the Next button.

On the Summary screen, click on the Install button.

Congratulations! You have finished the CGI feature installation on IIS.
Tutorial Windows - Perl Installation
Access the Perl website and download the latest version of the Perl installer.
In our example, we downloaded the file named: STRAWBERRY-PERL-5.30.2.1-64bit.msi

As the administrator, start the Perl installation.

Accept the license agreement and click on the Next button.

Set the desired installation path and click on the Next button.

Click on the Install button.

Wait for the Perl installation to finish.

In our example, Perl was installed on the following directory.
Copy to Clipboard

C:\Strawberry
Reboot the computer.
Congratulations! You have finished the Perl installation on Windows.
Tutorial IIS - Enable Perl on the IIS server
Start the application named: IIS Manager.

On the IIS Manager application, select your IIS server name.
On the right part of the screen, access the option named: Handler Mappings

Select the option named: Add Script Map

Perform the following configuration:
• Request Path - *.pl
• Executable - C:\Strawberry\perl\bin\perl.exe %s %s
• Interpreter - Perl CGI
Click on the OK button.

If the following message is presented, click on the Yes button.

Restart the IIS service.
Congratulations! You successfully enabled Python on the IIS server.
Tutorial IIS - Creating a Python page
Start a new DOS command-line prompt.

Access the IIS root directory.
Copy to Clipboard

C:
cd C:\inetpub\wwwroot
Create a Perl test page.
Copy to Clipboard

echo "" > test.pl
Use the Notepad application to open the test page.
Replace its content with the following code.
Copy to Clipboard

#!C:\Strawberry\perl\bin\perl.exe
print "HTTP/1.0 200 OK\n";
print "Content-Type: text/html\n\n\n";
print ("<h1>Perl is working!</h1>");
Open your browser and enter the IP address of your web server plus /test.pl.
In our example, the following URL was entered in the Browser:
• http://172.31.8.195/test.pl
The Perl page should display the following message.

Congratulations! The Perl extension was installed successfully on IIS.

Understanding configuration isolation
IIS worker processes do not have Read access to the ApplicationHost.config file. So, you might wonder how they can read any of the configurations sets in this file.
The answer is by using the configuration isolation feature in IIS 7.0 and later versions. Instead of enabling the IIS worker processes to read ApplicationHost.config directly when they read the configuration file hierarchy, the Windows Process Activation Service (WAS) generates filtered copies of this file. Each IIS worker process uses these copies as a replacement of ApplicationHost.config when configuration is read inside the IIS worker process. These files are generated by default in the %SystemDrive%\inetpub\Temp\appPools directory, and are named {AppPoolName}.config. These files are configured to allow access to only the IIS worker processes in the corresponding application pool by using the IIS APPPOOL\AppPoolName application pool Security Identifier (SID).
 Note
To learn more about SID, see Security Identifiers.
[image: Screenshot of using application pool for configuration isolation.]
This is done to prevent IIS worker processes from application pool A from being able to read configuration information in the ApplicationHost.config file that is intended for application pool B.
ApplicationHost.config may contain sensitive personal information, such as the user name and password for custom application pool identities, or the user name and password for virtual directories. Therefore, allowing all application pools to access ApplicationHost.config would break application pool isolation. If each application pool was given direct access to the ApplicationHost.config file, those pools could easily hack sensitive information out of other application pools by running the following command:
ConsoleCopy
appcmd list APPPOOL "DefaultAppPool" /text:*
[image: Screenshot of using the appcmd command.]
IUSR - anonymous authentication
Anonymous authentication allows users to access public areas of the website without being prompted for a user name or password. In IIS 7.0 and later versions, a built-in account, IUSR, is used for providing anonymous access. This built-in account does not require a password. It will be the default identity that is used when anonymous authentication is enabled. In the ApplicationHost.config file, you can see the following definition:
XMLCopy
<authentication>
 <anonymousAuthentication enabled="true" userName="IUSR" />
 </authentication>
This tells IIS to use the new built-in account for all anonymous authentication requests. The biggest advantages to doing this are the following:
· You no longer have to worry about passwords expiring for this account.
· You can use xcopy /o to copy files together with their ownership and ACL information to different computers seamlessly.
You can also provide anonymous authentication to your website by using a specific Windows account or application pool identity instead of an IUSR account.
IUSR versus Connect as
Connect as is an option in IIS that enables you to decide which credentials you want to use to access the website. You can use either the authenticated user credentials or specific user credentials. To understand the difference, consider the following scenario:
You have a default website that is configured to use anonymous authentication. However, your website contents are on another server, and you are using the Connect as section to access that resource through a Test domain user. When the user logs in, he is authenticated by using an IUSR account. However, the website content is accessed through the user credentials that are mentioned in Connect as section.
To put it more simply, anonymous authentication is the mechanism that is used by the website to identify a user. But when you use this feature, the user does not have to provide any credentials. However, there might be a similar scenario in which the contents are on a network share. In such cases, you cannot use built-in accounts to access network share. Instead, you must use a specific account (domain) to do this.
ASP.NET impersonation
Literally, impersonation means the act of pretending to be another person. In technical terms, it is an ASP.NET security feature that provides the ability to control the identity under which application code is run. Impersonation occurs when ASP.NET runs code in the context of an authenticated and authorized client. IIS provides anonymous access to resources by using an IUSR account. After the request is passed along to ASP.NET, the application code is run by using the application pool identity.
Impersonation can be enabled both through IIS and ASP.NET code if the application uses anonymous authentication, and if one of the following conditions is true:
· If IMPERSONATION is disabled, the application pool identity is used to run the application code.
· If IMPERSONATION is enabled, NT AUTHORITY\IUSR is used to run the application code.
When impersonation is enabled through IIS, it adds the following tag in the Web.config file of the application to impersonate the IIS Authenticated Account or User: <identity impersonate="true" />
To impersonate a specific user for all requests on all pages of an ASP.NET application, you can specify the user name and password attributes in the <identity> tag of the Web.config file for that application.
XMLCopy
<identity impersonate="true" userName="accountname" password="password" />
To implement impersonation through ASP.NET code, see Implement impersonation in an ASP.NET application
Open the IIS worker process of a test website that is impersonating a Test local user, and check whether you can find the impersonation account under which the application code is run.
The application pool identity of the application is set to ApplicationPoolIdentity, and anonymous authentication is provided by using IUSR account. You can easily trace the impersonating identity using ProcMon. For example, if you examine one of the CreateFile events that corresponds to the w3wp.exe process that you are examining, you can find the impersonating account, as shown in the following screenshot.
[image: Details of the impersonating in Event Properties.]

Understanding CGI with C# - CodeProject
[bookmark: Introduction1]Introduction
This article will attempt to cover everything you need to know to work with the Common Gateway Interface in C#, including reading the input of POSTs and GETs. Although this sounds like a lofty goal, CGI is actually quite easy to get into and gains most of its power from its simplicity. Despite that simplicity, I've labeled this as "Intermediate" because in order to take total advantage of CGI, I had to slip in some intermediate things, such as threading. Threading is presented in its most straight forward of terms, however, and only briefly utilized, so don't fret. Even if you have never worked with threading in C# before, I believe you will not have trouble with that part or any other sections that earned the "Intermediate" status.
The Common Gateway Interface, or CGI, is a long standing W3C standard[^] for communicating between a web page and an application available on the web server. Applications on the server communicating in CGI have all the functionality of any other native application, such as database access or reading input files. Nevertheless, in today's world, with ASP.NET, PHP, Perl and many other scripting languages providing essentially the same functionality, you may wonder why you would bother creating your own CGI application with C#. There are a few reasons I can think of that may apply.
[bookmark: WhyyoumightwanttouseCGIwithC#2]Why you might want to use CGI with C#
First, the interpreters for ASP, PHP, Perl, etc. are essentially applications taking advantage of CGI. In many cases, they are built directly into the web service (such as with ISAPI for IIS), but all of them are also available in their CGI skins (ASP available as CGI via Novel's Mono project). To better understand the capabilities and limitation of your favorite server side scripting language, you may be interested in how it works at a lower level.
Another reason is you may like to write your own mini-scripting interpreter. Languages such as ASP are very general purpose, and although they can do anything, some things could be better accomplished with a more specific purpose script.
For instance, this describes the reason I first delved into the realm of CGI and C#. My company has a very high demand for reporting. Despite a wide range of tools available to the employees, the website remains a top resource for their customized reports due to lots of travel. All of the reports have a variety of very picky graphical requirements, from formatting, to charts, to providing a dynamically generated Excel workbook. The ASP code was starting to look scary so we created a custom C# application to interpret a reporting language so specific to our business needs that even non-programming power users can help out in creating and modifying the reporting needs. (A topic for another article?)
Another benefit to CGI is that it is web server agnostic. The same executable will work for IIS as it does for Apache, as it does for any other W3C compliant web server. And unlike some scripting languages, the executable is compiled so execution is fast and the source is not visible.
C# is an excellent language to use with CGI because of the power of the .NET framework. It is also possible to test a C# application utilizing CGI, even without a web server, because it simply runs as a console application. More on that later.
Finally, there are web service providers who allow you to use custom CGI applications that may not allow you to use Apache modules or ISAPI IIS DLLs. The reason is that an integrated module in a web server can potentially do a lot more damage to the web server than a separate, controllable executable. Now that we've seen some of the reasons to use CGI with C#, let's look at some reasons not to.
[bookmark: Whyyoumight<i>not</i>wanttouseCGIwithC#3]Why you might not want to use CGI with C#
One reason you might not is that a CGI application is executed as a separate process every time a web page requests it. This is unlike some forms of Apache modules or ISAPI IIS DLLs where the CGI application is loaded once and stays in memory. Nevertheless, this isn't always a concern. There are plenty of high-end web servers providing Perl as a CGI module that do just fine. Your CGI applications are very unlikely to be nearly as resource consuming as perl.exe. Still, if you find your web server's resources are starting to get low, you may consider switching to a built-in module. Fortunately, almost all of your code will be the same, just substituting different inputs and outputs and adding a little bit more threading.
Another reason you may avoid using CGI is that the burden for security is higher with CGI than it is with a server-side scripting language. There are limitations in scripting languages that are not present in your own application. Because of that, extra caution needs to be applied, especially in how you handle input coming from (you hope) your users. Check out the section on security to learn about what methods are used to make your CGI app tight.
Finally, even if you've decided on using CGI, keep in mind that C# isn't always the best choice. Although C# compiles down to a small executable size, it is usually used in conjunction with the .NET framework, which means the .NET runtime will have to re-loaded now and then, depending upon how often the application is requested. (Yes, I realize it is possible to compile C# as a standalone as well.) In an environment where speed is paramount, you may consider using C or C++, or re-examining the benefits of built-in modules.
[bookmark: AThoroughUnderstandingoftheCommonGateway]A Thorough Understanding of the Common Gateway Interface
Despite what you may assume from a W3C standard, CGI is not a language or a protocol. To borrow some text from the standard's description, it "is an agreement between HTTP server implementers about how to integrate" with your application. In other words, it defines how a web server talks to your program when a web page requests it. Because web servers can span many platforms and many operating system environments, there are three forms of communication the standards committee felt they could rely on. They are:
· Standard Input,
· Standard Output, and
· Environment Variables
If you've worked with a C# console application before, then you may recognize standard input is usually entered through the keyboard. Standard output is what is displayed on the console screen by the program. Environment variables fall into the domain of a function of the operating system most of the time. Environment variables you may recognize are things like the PATH. From a command prompt (Start -> Run -> cmd), type the command SET to see a full listing of the environment variables on your computer. You will see there are quite a lot. (If using Windows 2000 or higher, you can also right click on My Computer, click Properties, then the Advanced tab, and finally, Environment Variables, to get a graphical look at your current environment.) In the figure below, the "User variables" refers to the environment set up specifically for the current user and the "System variables" refers to the base environment that defaults for everyone.
[image: Environment Variables.]
You can also set an Environment Variable temporarily at a command prompt using the SET command. Just type SET followed by the name of the variable you'd like to create, an equals sign, and the value you'd like to set. Take the following example where we create a variable named ZNewVariable, then use 'set' again to display it:
c:\>set ZNewVariable="I am setting an Environment Variable."
c:\>set
...
windir=C:\Windows
ZNewVariable=I am setting an Environment Variable.
In C#, environment variables are accessed through the System.Environment namespace. We'll cover that in depth a little later on.
One more thing to note with environment variables is that the available length of the variable varies from platform to platform. The basic rule of thumb is that an environment variable should be less than 512 characters. As we will see, this is one of the inherent limiting factors to the GET method of a web form.
So, the CGI standard says a web server will communicate with your application through standard input, standard output, and environment variables. To tie that into a practical view, think of standard input as a way to send large amounts of data from a web page to your app. In the web form, it is referred to as a POST. POSTs do not appear in the URL of a request and they are usually sent to the server to accommodate very large, dynamic, or sensitive information.
Environment variables are a convenient way to send a small amount of information to your app. In the web form, this is a GET (even though it's really still sending information and not "getting" it anymore than a POST does). GETs do appear in the URL of a request so they can be bookmarked for later use. This is useful for things like forums or searches that are somewhat dynamic but are generally meant to "get" information from the CGI app rather than send useful information to be stored by the CGI app, hence the name. An example URL might look like this:
HTML
http://localhost/cgi_csharp?TestVariable=123
Standard output is what your application sends to the web browser as a response to either a POST or GET. This is usually in the form of HTML formatted text.
When using CGI, standard input (hereafter called stdin) and standard output (hereafter referred to as stdout) are "piped" into the web server so that when a page makes a request, all of this goes on behind the scenes without actually launching a console screen on the server. You don't have to code any of this as it is all taken care of by the server.
[bookmark: UnderstandingCGIThroughExample5]Understanding CGI Through an Example
I find the best way to understand something is to play with it. Although I alluded to the fact that you can test your CGI application with just an open console and using the set command yourself, I think it is more interesting to play with the real thing - a web browser. In this section, I'm going to concentrate my attention on configuring IIS, since I know most of the people reading this probably have IIS already working. The concepts apply to any web server, however, and if you are in a real pinch, you can pretend you are a web server by setting the environment variables yourself at the command line before executing your CGI app.
Before we can set up our server though, we need to have a CGI application. Open up your favorite C# editor, create a console project, and type in the following small program:
C#
Shrink ▲
using System;
namespace CgiInCsharp
{
 class Cgi
 {
 [STAThread]
 static void Main(string[] args)
 {
 Console.Write("Content-Type: text/html\n\n");
 Console.Write("<html><head><title>CGI" +
 " in C#</title></head><body>" +
 "CGI Environment:
");
 Console.Write("<table border = \"1\"><tbody><tr><td>The" +
 " Common Gateway " +
 "Interface revision on the server:</td><td>" +
 System.Environment.GetEnvironmentVariable("GATEWAY_INTERFACE") +
 "</td></tr>");
 Console.Write("<tr><td>The serevr's hostname or IP address:</td><td>" +
 System.Environment.GetEnvironmentVariable("SERVER_NAME") +
 "</td></tr>");
 Console.Write("<tr><td>The name and" +
 " version of the server software that" +
 " is answering the client request:</td><td>" +
 System.Environment.GetEnvironmentVariable("SERVER_SOFTWARE") +
 "</td></tr>");
 Console.Write("<tr><td>The name and revision of the information " +
 "protocol the request came in with:</td><td>" +
 System.Environment.GetEnvironmentVariable("SERVER_PROTOCOL") +
 "</td></tr>");
 Console.Write("<tr><td>The method with which the information request" +
 "was issued:</td><td>" +
 System.Environment.GetEnvironmentVariable("REQUEST_METHOD") +
 "</td></tr>");
 Console.Write("<tr><td>Extra path information passed to a CGI" +
 " program:</td><td>" +
 System.Environment.GetEnvironmentVariable("PATH_INFO") +
 "</td></tr>");
 Console.Write("<tr><td>The translated version of the path given " +
 "by the variable PATH_INFO:</td><td>" +
 System.Environment.GetEnvironmentVariable("PATH_TRANSLATED") +
 "</td></tr>");
 Console.Write("<tr><td>The GET information passed to the program. " +
 "It is appended to the URL with a \"?\":</td><td>" +
 System.Environment.GetEnvironmentVariable("QUERY_STRING") +
 "</td></tr>");
 Console.Write("<tr><td>The remote IP address of the user making +"
 "the request:</td><td>" +
 System.Environment.GetEnvironmentVariable("REMOTE_ADDR") +
 "</td></tr>");
 Console.Write("</tbody></table></body></html>");
 } // End of Main().
 } // End of Cgi class.
} // End of CgiInCsharp namespace.
[bookmark: WorkingThroughtheFirstExample6]Working Through the First Example
That's plenty for us to get started with. Going through the code, we see that the only namespace we need to add with the using directive is System. Since we know that we will communicate back to the web browser using stdout, we can simply write the output we want the web browser to see with a series of Console.Write() commands. The first one:
C#
Console.Write("Content-Type: text/html\n\n");
is not HTML but actually the HTTP header. It tells the web browser what kind of document it should expect back. This is useful if you would like to send something other than HTML back to the web browser to work with, such as an image or animation. It is also useful for sending other meta data back to the web client such as requesting cookies. The HTTP protocol is pretty straight forward and there are lots of good tutorials around, but the official W3C documents are very difficult to get through. I find one good way to learn about HTTP header information is through example. Go to a few web sites and look at the header information being returned. (You can do that with a web browser such as Firefox[^] and the Web Developer Tools extension[^].) To help you get started, the following code is the header information I received viewing this site. Note that each HTTP command must reside on its own line.
Server: Microsoft-IIS/5.0
Date: Fri, 28 Jan 2005 19:04:10 GMT
X-Powered-By: ASP.NET
Content-Length: 13444
Content-Type: text/html
Set-Cookie: cat=1; expires=Sat, 28-Jan-2006 05:00:00 GMT; path=/
SessionGUID=%7XXXXXXXXXXXXXXXX%2XXXXXXXXXXXXXX%2XXXXXXXXXXXXX%7X; path=/
Cache-Control: private
Content-Encoding: gzip
Vary: Accept-Encoding
The only required piece is the Content-Type: tag. The HTTP header must appear as the first thing your CGI application communicates back, followed by two new lines (hence the \n\n). The extra new line tells the browser we are ready for the document content. Later, you may want to comment out the header line from our CGI application and try running it with different web browsers to see how each one copes with the error.
The rest of the Console.Write() lines start displaying some interesting environment variables set by the web server. They use the System.Environment.GetEnvironmentVariable() method built into the .NET framework. For a full list of variables a standards compliant web server provides, check out the official CGI 1.1 specification data sheet[^]. We'll explore the more interesting variables in more detail once we have a web page up and using this CGI application.
That's it for the source code for now. We have a very basic framework so far that looks at interesting environment variables to show we are getting input, and stdout Console.Write()s to send output. We haven't dealt with stdin yet, or security, but I'm anxious to see something happen, so let's go on to checking our IIS web server setup.
[bookmark: UsingIIStoLaunchourAppinaWebPage7]Using IIS to Launch our App in a Web Page
In this example, we are going to use the Default Web Site in IIS. If you already have some websites going, go ahead and create a new web site or virtual directory to use. I'm going to show you two ways to use our CGI application, the first way will require the executable to be in an IIS browsable directory, the second way will be more secure and won't require the executable to move from the folder where you compile it (but will be a little bit more complex to set up).
To get going with the first method, open the Internet Information Services manager. Locate the web site you want to use and right click on it (in our example, "Default Web Site"). Now go to Properties.
[image: IIS Manager.]
Click on the Home Directory tab. Make sure that Execute Permissions is set to Scripts and Executables. If it hasn't been set before, it will warn you this is a security risk. We'll end up setting it back later, so go ahead and confirm the change here for now. Press Apply, and then OK.
[image: IIS Manager.]
You are ready to copy the executable you compiled into your website directory. Once you've copied it there, open up a web browser such as Internet Explorer and browse directly to the executable through IIS by starting with http://localhost. If you've followed the instructions here, then you can type into the address bar: http://localhost/cgi_csharp.exe[^].
For a side bit of fun, you could also rename your executable to end in .com to seem more web like, since both .com and .exe are considered executable by Windows. That makes the link look more like this: http://localhost/cgi_csharp.com[^].
Your web browser output should look something like this:
The Common Gateway Interface revision on the server: CGI/1.1
The serevr's hostname or IP address: localhost
The name and version of the server software
 that is answering the client request: Microsoft-IIS/5.1
The name and revision of the information protocol
 the request came in with: HTTP/1.1
The method with which the information request was issued: GET
Extra path information passed to a CGI program:
The translated version of the path given by the variable PATH_INFO:
The GET information passed to the program. It is appended to the URL with a "?":
The remote IP address of the user making the request: 127.0.0.1
Don't worry if some of the variables are blank. Some of them don't apply yet and some others may not be provided by your web server. Part of this experiment is to understand what kind of information we get back. See the source and demo attachments at the beginning of this article to get a more thorough listing of items.
Now let's add a web page form so that we can see information pass to the CGI program dynamically. Create a new text file in the same web folder you've copied your CGI program into by right clicking and going to New -> Text Document. Name it index.txt. Double click the document to open it in Notepad and type in the following HTML form:
HTML
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=ISO-8859-1" http-equiv="content-type">
<title>CGI in C#</title>
</head>

<body>
<h2>Form for Testing CGI Application</h2>

<form action="cgi_csharp.com" method="GET">
Enter your own input here: <INPUT TYPE="text" NAME="play" SIZE="30" />

<input type="submit" value="Submit Report with GET" />
</form>

</body>
</html>
Once you finish typing that in, save the document and exit Notepad (or whatever you used). Now rename the file to index.html. If Windows doesn't prompt you to ask if you are sure you want to rename the extension, then it might be hiding file extensions from you and only pretending to be naming it correctly. For an example how to fix your view in XP, go to Tools -> Folder Options -> View tab and uncheck "Hide extensions for known file types".
I'll assume most of this HTML you already understand or can look up on your own. The important bit is the <form action="cgi_csharp.com" method="GET">. This code makes what you type in the input box be sent to the CGI application cgi_csharp.com. If you named your CGI application something else (like, cgi_csharp.exe), just substitute your name in the action attribute. The "method" attribute sets how the CGI application receives the information. Note that we specified that this will be a GET request.
When you hit the Submit button, look up at the top of the URL and you will see whatever you typed in the text box appear. This is how the GET method allows you to bookmark a request for later use. Instead of using the HTML web form, you can alter the URL and submit the information directly. This is very useful for allowing a richer, more powerful user experience. However, it is also a common way for people to try to abuse your CGI application, by ignoring any filtering done in the HTML client and sending dangerous inputs to the server directly.
Once you hit Submit, you can see that our application has indeed picked up the GET data as an environment variable:
The GET information passed to the program.
 It is appended to the URL with a "?": Testing+1+2+3
Any spaces were converted to + signs because you can't pass spaces in a GET. Go ahead and play with this a little bit and see what kind of output you can produce from your input.
[bookmark: AddingthePOSTMethodtoYourArsenal8]Adding the POST Method to Your Arsenal
Now this is where most tutorials end, which isn't necessarily bad since we can already do a lot with CGI. However, GET doesn't meet every need. If you want to send large amounts of data, or data that doesn't end up in the URL of a web browser, what you need is the POST method. Many tutorials end with GET because getting POST information is a trickier problem than it may seem. The problem is actually with the 1.x versions of the .NET framework. Microsoft says they will fix the issue in version 2, but as of the writing of this article, that hasn't come about yet. The limitation is with the poor implementation for Console applications in .NET. What we will need is a more powerful Console.Read() method.
The issue stems from the fact that although Console.Read() only returns one character at a time like we want, the Console defaults to a mode in which input is buffered until the user presses the Enter key. That means you won't have any POST information unless the last character in your HTML form is an ASCII 13 (enter). Unfortunately, I'm not sure how cross-platform the fix for buffering for an Enter key is. If you plan on using the Mono or DotGnu runtimes, you will have to use trial and error, or just deal with adding an Enter to all web form POSTs.
Although that may be a limitation you are willing to accept, there is a more serious problem facing our POST. Console.Read() is blocking. That means that once your application requests a Console.Read(), it will not be able to process anything else until it reads a character. If it is expecting POST information and there isn't any, then your CGI app will hang and the browser will eventually just time out. (A security issue and annoyance.)
Fortunately, both of these problems are easy to overcome in just a few lines of code.
[bookmark: FixingtheConsoleInputBufferingDilemmafor]Fixing the Console Input Buffering Dilemma for POST
In order to change the Console mode so that it doesn't require an Enter, we need to call a Win32 method. In order to do that, we have to tell the C# program where that method exists in the operating system. First, add a new namespace to the top of the CS file:
C#
using System.Runtime.InteropServices;
The method we are after is, appropriately, SetConsoleMode(). It lives in the Windows kernel. To tell C# where to find it, just after defining the class, enter a DllImport directive like so:
C#
...
 class Cgi
 {
 [DllImport("kernel32", SetLastError=true)]
 static extern int SetConsoleMode (int hConsoleHandle, int dwMode);
...
Then all you have to do is call the method. To do that, add this one liner near the top of your Main() method:
C#
SetConsoleMode(3, 0);
Why are the parameters 3 and 0? Well, the basic answer is I peeked at a C header file for SetConsoleMode and found that the first parameter expects stdin to be equal to 3. Because this was a hard coded define in the header file, I assume that 3 is the correct answer for all Windows platforms. If someone has a more elegant solution, please let me know and I will make the correction. The second parameter, 0, tells SetConsoleMode what to do with the first parameter, stdin. We want to clear everything and utilize a raw console, so we set it to 0. Again, this is based off of examining a C header file.
[bookmark: FixingtheInputBlockingDilemmaforPOST10]Fixing the Input Blocking Dilemma for POST
Now that we can read in characters all day long, we need to watch out for input blocking on stdin or else our CGI application could be vulnerable to locking up if the POST data is empty or otherwise problematic. Just like the last POST hurdle, this will require some intermediate level programming, but it will also be a very quick fix.
Since .NET doesn't support non-blocking Console input, we're just going to have to invent it ourselves. To do that, we're going to create a method just for getting the stdin input, then process that method separately from Main(). Main() will track the progress of our custom method and if it doesn't return the information we expect after a predetermined time-out period, we will gracefully report the error and exit. Of course, that sounds like doing two things at once, right? I warned you we would touch on threading.
First, we need to add one last namespace:
C#
using System.Threading;
Then, we need to set up our method for reading stdin.
C#
public static void GatherPostThread()
{
 if(PostLength > 2048) PostLength = 2048;
 // Max length for POST data for security.

 for(;PostLength>0;PostLength--)
 PostData += Convert.ToChar(Console.Read()).ToString();
}
Note that in this example we limited the POST length in characters to 2048. This was an arbitrary number and probably pretty low. But if someone is trying to use their web browser as a weapon, you probably don't want to let them send unlimited ammunition into your program, so choose a value that is appropriate for your purposes.
Hey, where did those PostData and PostLength variables come from? Well, we're going to use those variables to communicate between the two threads. I normally try to keep static members down to a minimum (probably because of my C++ background), but here's how we defined these for a quick and easy solution:
C#
class Cgi
{
 ...
 [DllImport("kernel32", SetLastError=true)] // Old code.
 static extern int SetConsoleMode (int hConsoleHandle, int dwMode); // Old code.

 private static string PostData; // New code.
 private static int PostLength; // New code.
 ...
The PostData string will be used to store our incoming POST stream. The PostLength is actually something that should come in as an environment variable and gives us a clue as to how much data might have been POSTed to us. We load that variable with this line from within Main():
C#
PostLength =
 Convert.ToInt32(System.Environment.GetEnvironmentVariable("CONTENT_LENGTH"));
We can now setup a new thread to start in order to run our GatherPostThread() method, also in Main():
C#
...
ThreadStart ThreadDelegate = new ThreadStart(GatherPostThread);
Thread PostThread = new Thread(ThreadDelegate);
...
int LengthCompare = PostLength;

if(PostLength>0) PostThread.Start();
...
The conditional statement checks if the web server is telling us there is data. If not, then there's no point in wasting our resources on starting the thread. I've also added a local variable to Main() called LengthCompare. We are about to use this at the end of our Main() method to check and make sure our GatherPostThread() is still doing work and not being lazy on the job.
C#
...
while(PostLength > 0)
 {
 Thread.Sleep(100);
 if(PostLength < LengthCompare)
 LengthCompare = PostLength;
 else
 {
 PostData += "Error with POST data or connection problem.";
 break;
 }
 }
...
Now recall that in our threaded method, we are counting down the PostLength every time we read in a character. Here, we check to make sure that it is indeed decreasing in value. Every 100 milliseconds, we check it against its prior value. If it is the same, then we know there is a problem because, although 100 milliseconds goes by fast for us, it is more than enough time for the POST thread to read in another single byte of data. (With a small POST, I'd be surprised if the data hasn't already finished reading before we reach that loop.) Now let's add another table row that shows off our new POST capabilities:
C#
Console.Write("<tr><td>The POST data passed" +
 " to the program through standard input:" +
 "</td><td>" + PostData +
 "</td></tr>");
There's only one more piece to the POST threading puzzle, and that is what happens if the web server lies to us. If the value of PostLength is not the real length of data waiting for us, then even though our main thread may close, the GatherPostThread method will still be spinning its wheels. To make sure we avoid any unnecessary trouble there, we simply add:
C#
Environment.Exit(0);
to the end of Main().
You may be thinking that this seems (and indeed the entire example) very procedural. And after all, what's the point of using a powerful object oriented language like C# if you don't take advantage of its design capabilities. In the end, that is a question you will have to answer for yourself, but here is my perspective.
First of all, for design, we can't really afford for this application to be event driven. That doesn't even make sense, really, since there is no human interaction and the user's web experience is going to be largely based upon how fast the application can do its thing and exit. Although we are not taking advantage of those aspects of C#, we can still take advantage of an object oriented design for a complex enough project. This small CGI app does not qualify, but if you are out to make the next Perl, you probably will use OOP, and quite a lot. Also, C# to me, is the most beautiful language available that takes advantage of the versatile .NET framework. Just because you don't use everything C# or .NET has to offer, doesn't mean that the things you do use with it don't add a lot of value. OK, enough of the side tangent. Let's move on.
Rebuild the program and copy it to the web directory you're using. Edit the index.html page with a text editor and change the FORM method="GET" to method="POST". Reload the page and you should now see the data appear under the POST section. Hurray! We've made it through the tricky part!
[bookmark: HowAboutYourOwnScriptingorHowtoGetRidofT]How About Your Own Scripting or How to Get Rid of That IIS Script And Executable Security Issue
This section could actually also be called, "how to make the extension of the CGI look like anything you want", or "how to leave the executable where you compile it so you don't have to keep copying it over every time you want to test a change". All of these things are about to be accomplished at once with one important change. All we have to do is associate our executable as the CGI app of choice for an arbitrary script extension. In IIS, this is called "Application Mappings" and it is similar with other web servers.
The reason I put it off until now is that I wanted it to be clear that a CGI application is independent of any scripting language. Indeed, even what we are about to do is totally independent of any scripting, but because it can be used to make your application a scripting interpreter, I wanted to hold off on using this method until the distinction was more clear.
[bookmark: Re-SettingUpIIS12]Re-Setting Up IIS
Application Mappings' real purpose is to associate a script file with its interpreter. By creating our own extension to map to our CGI application, we are no longer bound by where our executable resides or what name the website shows when launching it. The custom scripting file itself, as we'll soon see, can be completely empty for all we care. But if you do care, this section will show you how you can go about optionally reading in its contents as well.
Open up the IIS manager again and right click on your website. In our example, it is called Default Web Site again.
[image: IIS Manager.]
Go back to the Home Directory tab. Change Execute Permissions back to Scripts and click "Configuration..." on the side.
[image: IIS Manager.]
Now, click the Browse button next to the Executable field. Find the directory where your executable is generated and select it. Under Extension, type anything you like as long as it doesn't conflict with other common extensions. I used .csx to mimic aspx but for C#. You can also use .test or .your_initials if you like. I'll assume .csx was used from here on out, but understand that is arbitrary.
The Verbs section allows you to limit what kind of information goes to your CGI app. Specifically, you can limit yourself to just GET, or just POST here, for instance. You may see other extensions listing things like HEAD, PUT, or DELETE. These are HTTP variations to GET and POST that help clarify the intention of the requesting page. Because they are rarely used (for good purposes), many web servers block or transform these requests into plain old GETs and POSTs, so don't worry much about them unless you are a system administrator for a public web site. To your CGI apps, HEAD will usually look just like GET and everything else will usually look like POSTs. You can just leave the Verbs section here in IIS as it stands.
Script engine check box you should leave checked if you want to execute your application from where you compile it. If at some point you wish for it to only execute from a folder specifically designated for CGI applications, you can uncheck this option. For now however, leave it so you don't have to go through extra troubleshooting should something go wrong.
"Check that File Exists" means that the web server will make sure the requested .csx file exists. The down side is that that takes extra time and resources for something you should be doing in your application anyway, if you are even creating a scripting interpreter. I usually uncheck this, but it won't make a difference for this discussion one way or the other.
Now hit Apply and OK, and we are ready to go. All we need is an empty file in our web site with an extension of .csx. You can create that by right clicking in the web folder, going to New -> Text File, then renaming the file to something like csharp.csx. Again, don't forget to check if Windows is hiding file extensions from you if it doesn't work at first.
Now point your web browser to your file. In our example, you'd type: http://localhost/csharp.csx[^] into the address bar. With any luck, you should have gotten the CGI output. Now edit your index.html and change the FORM action="cgi_csharp.com" into action="csharp.csx". Now when you re-load your index.html (you should probably refresh it to be sure) and type information into the text field, it will launch what looks like csharp.csx in your web browser but gives the output of your C# application, POST or GET data included.
[bookmark: HowtoReadCSharp.csxIfYouWantTo13]How to Read CSharp.csx If You Want To
Now that we have told IIS that a file with a .csx extension is a script file for our CGI application, you may actually be interested in the contents of the .csx file that launches your app. Again, you don't have to do anything with it at all, but if you want to, you may have trouble at first figuring out which .csx file called your program.
I struggled with this at first because I assumed IIS would pass the file name to the application as a command line argument, similar to launching a Perl script with "perl.exe script.pl". This is not the case, however. Instead, we must look again at the environment variables. Specifically, the one named PATH_TRANSLATED. Note that we are already checking the value of PATH_TRANSLATED in our CGI application. Up until we set up the association with .csx files, however, this field has been empty. Now, it shows the full path and name of the csx file that requested our program. All you have to do is set up a text reader or whatever you like and process the file in whatever way your heart desires. (Don't forget to do a check to make sure the file really does exist though!)
[bookmark: Security14]Security
In the official definition of the CGI 1.1 specification, there is a brief look at some security issues[^]. I would like to cover the issue from a slightly different perspective here. The biggest issue with security is making sure that you make safe all input coming into your program from "out there". Never trust the client. It is not difficult at all to send bad information. The most common issue is when your CGI application provides an interface from the outside world into a local system, such as a database. If you just blindly send the input from the webpage into the database, you have created a back door to the database, nullifying its security model in a way that can and will be exploited. Same thing goes for if your application lets a web user send e-mail. Same if it executes a shell command on behalf of a dynamic request.
In order to provide security, I recommend you really get to know what the purpose of your application is regarding what it provides for user input, then filter the user input with only the worst in mind. Even if you can't think of how the input could be abused, make sure you allow only the things you can think of that are legitimate and deny all else!
Also, and this is my opinion, try not to undermine the security of another system. If, for instance, a database normally requires authentication to use, then make the user authenticate instead of hard coding the user name and password into your application.
Finally, if the content that is sent to your CGI application can be used in some way back in a browser, think of the security and stability of your users as well. By weeding out things like HTML from a forum post, or only allowing certain types of formatting, you can protect your other users from potentially malevolent intentions. Since our example application does redisplay in HTML, the POST and GET information it receives, this is an excellent opportunity to give a quick example.
Let's create a new method called Sanitize:
C#
Shrink ▲
public static string Sanitize(string Raw)
{
 string Clean = "";
 int Walk;
 char[] ByCharacter;
 if(Raw == null)return Clean;
 ...
 Raw=Raw.Replace("%22", "\""); // Example GET encoding cleanup. (%hexnumber)
 Raw=Raw.Replace("<", "<"); // Example HTML encoding cleanup.

 ByCharacter = raw.ToCharArray();
 for(Walk = 0; Walk < Raw.Length;Walk++)
 {
 if(ByCharacter[Walk] == '\'') Clean += "'";
 else if(ByCharacter[Walk] == '"') Clean += "\"";
 else if(ByCharacter[Walk] == ' ') Clean += " ";
 else if(ByCharacter[Walk] == '&') Clean += "
";
 else if(ByCharacter[Walk] >= 'A' && ByCharacter[Walk] <= 'z' ||
 ByCharacter[Walk] >= '0' && ByCharacter[Walk] <= '9' ||
 ByCharacter[Walk] == '=' || ByCharacter[Walk] == ',' ||
 ByCharacter[Walk] == '.' || ByCharacter[Walk] == '@' ||
 ByCharacter[Walk] == '#')
 Clean += ByCharacter[Walk].ToString();
 else Clean += "^";
 }

 return Clean;
 } // End of Sanitize() method.
The Sanitize() method takes a questionable string as a parameter, tries to translate any GET or HTML formatting, then walks through the string character by character admitting or denying based on, in this example, a limited set of acceptable sets. It replaces characters it doesn't accept with the '^' character. There are more elegant ways to do this, and in fact, I would recommend looking into regular expressions, but this seemed like a straight forward way to help get the point across. I left out a lot of the Raw=xxx code that translates HTML and GET requests due to the size of this code, but just download the example source for the full filter. Keep in mind, I had English in mind when I created it so you may want to expand its functionality and maybe try a few creative ways to play with filtering on your own.
To use our Sanitize() method, simply wrap the PostData and QUERY_STRING strings in it.
C#
...
 Console.Write("<tr><td>The GET information passed to the program. " +
 "It is appended to the URL with a \"?\":</td><td>" +
 Sanitize(System.Environment.GetEnvironmentVariable("QUERY_STRING")) +
 "</td></tr>");
...
 Console.Write("<tr><td>The POST data passed" +
 " to the program through standard input:" +
 "</td><td>" + Sanitize(PostData) + "</td></tr>")
...

How to Add CGI Script Support (Perl, Python, etc) to Your Apache Server on Windows (thesitewizard.com)

How to Add Perl CGI Script Support to Your Apache 1.x Web Server on Windows
by Christopher Heng, thesitewizard.com

Following thesitewizard.com's earlier articles on how to install the Apache 1.x web server on Windows and how to install PHP support, I have received numerous queries on how to add support for executing Perl scripts in a Windows installation of the Apache web server. This article explains what you need to do to make your Apache server run Perl CGI scripts (or Python or any other CGI script) on Windows systems.
If you missed the articles on installing Apache and PHP on Windows, you can find them at:
· How to Install the Apache 1.x Web Server on Windows at https://www.thesitewizard.com/archive/apache.shtml
· How to Install and Configure PHP4 to run with Apache 1.x on Windows at https://www.thesitewizard.com/archive/php4install.shtml
· How to Install and Configure PHP 5 to Run with Apache on Windows at https://www.thesitewizard.com/php/install-php-5-apache-windows.shtml
As mentioned in those articles, installing Apache on your local machine allows you to test your CGI and PHP scripts without having to go online and upload them to your web host. This makes for faster and easier development of your scripts.
Note: this article applies to the Apache 1.x web server (where "x" is some number). I have not tested the procedure below on later versions of Apache (since I mostly use PHP for web scripts nowadays). Chances are that it will not work on Apache 2 and later, since a lot of things have changed since the version 1 series. If you want an up-to-date way of installing Apache and integrating Perl and PHP into it, please see How to Install and Configure Apache, PHP, Perl and MySQL on Windows the Easy Way (with XAMPP) instead.
Installing Perl (for Perl users)
Obviously if you are going to run Perl scripts on your computer you will need to install Perl. You can obtain a Windows version of Perl free of charge from one of the sources listed on the Free Perl Executables page of thefreecountry.com (such as ActivePerl or Strawberry Perl).
Install Perl on your computer according to the instructions given by the implementation you downloaded.
Configuring Apache
1. Running Perl Scripts in a CGI directory
You can configure Apache to treat any file in a particular directory as a CGI script. Typically, web hosts call such a directory the cgi-bin directory.
To configure Apache to treat a particular directory as your script directory, search for the following line in your "httpd.conf" file.
For those who have forgotten where the "httpd.conf" file can be found, try looking for it in the "conf" directory of your Apache folder. If you used the default directories supplied by the Apache installer, it would be "c:\Program Files\Apache Group\Apache\conf\httpd.conf".
ScriptAlias /cgi-bin/ "C:/Program Files/Apache Group/Apache/cgi-bin/"
If it has been commented out, that is, if there is a hash mark ("#") before the line, remove the hash character to enable it. If it has not been commented out, it means that your Apache is already configured to run CGI scripts in that directory. You can change the directory to another directory if you wish.
2. Running CGI scripts anywhere in your domain
If you don't want to be restricted to running CGI scripts within the ScriptAlias directory in your domain, and want CGI scripts to run anywhere in your domain, add the following line to your "httpd.conf" file.
AddHandler cgi-script .cgi
You can add it yourself manually, but since the default httpd.conf file that is supplied by Apache already comes with that line commented out, the simplest thing would be to search for that string in your existing file, and remove the preceding comment character, that is, remove the "#".
If you want the .pl extension recognised as a CGI script as well, simply append the extension to the list, as follows:
AddHandler cgi-script .cgi .pl
Next, search for the line that says "<Directory /> in the file. It should look something like this:
<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>
Add "+ExecCGI" to the options list. The line now looks like this:
Options FollowSymLinks +ExecCGI

3. Making a CGI Script Your Default Page
If you want to make your CGI script execute as the default page for a directory, you have to add another line to the Apache configuration file (httpd.conf). Simply search for the line in the file that begins with a "DirectoryIndex" and add "index.cgi" to the list of files on that line. For example, if the line used to be:
DirectoryIndex index.html
change it to
DirectoryIndex index.cgi index.html
The next time you access "http://localhost/" or "http://localhost/directory/" without any filename specified, Apache will run "index.cgi" if available or deliver "index.html" if it cannot find "index.cgi". If you have both "index.cgi" and "index.html" in the directory, "index.cgi" is used since it's listed first.
You are not limited to the above two files. For example, I have set up Apache on my computer with the following line:
DirectoryIndex index.php index.cgi index.shtml index.html
If you have also installed PHP support and enabled server side includes in Apache, the directive will instruct Apache to look first for an index.php file, or failing that an index.cgi file, or if that could not be found, an index.shtml file, and finally an index.html file if all else fails.
That's it. Your Apache server now supports the execution of CGI scripts. You will have to restart the server before the new configuration comes into effect. The work's not ended however — read on.
Modifying Your CGI Script
As it stands, if your CGI script is a Windows executable, it would be executed by Apache correctly. However, if it's a script that relies on an interpreter such as Perl or Python, you will have to modify the first line of the script.
Your Perl script will typically contain an initial line of
#!/usr/bin/perl
or some such thing. This tells a Unix-based kernel to look for an interpreter at the path "/usr/bin/perl" and invoke it to interpret the instructions in the file.
Since the script now runs on Windows, and it is unlikely that you installed your Perl interpreter in a /usr/bin directory, you will need to change that first line to point to the real location of your Perl interpreter.
For example, on my Windows box, I have to change the first line of my Perl scripts to:
#!c:/program files/perl/bin/perl.exe
Of course if you are using other scripting languages, you will have to set that initial line to point to whatever interpreter you are using.
It's Worth It
In my opinion, it's actually worth your while to install Apache, Perl, PHP and MySQL on your own computer. Testing your scripts offline allows you to work out the most obvious bugs and problems in a setting where you don't have to worry about bringing down the real web server or incurring ISP and telephone charges. It also allows you to work more efficiently, since you can simply edit your scripts on your computer to instantly fix problems while testing, without having to re-upload them before testing again. Of course, you will still have to test it when you actually put the script on your site. But at least, by then, you would be more likely to have a script that works as advertised.
This article can be found at https://www.thesitewizard.com/archive/addcgitoapache.shtml
Copyright 2001-2018 by Christopher Heng. All rights reserved.
Get more free tips and articles like this, on web design, promotion, revenue and scripting, from https://www.thesitewizard.com/

Configuring the Apache Web Server to Run Perl Programs on Windows (editrocket.com)

Configuring the Apache Web Server to Run Perl Programs on Windows
Listed below is information on how to configure the Apache web server to run Perl CGI programs on Windows machines. For information on installing and configuring Apache for Windows, please see the following:

Installing and Configuring Apache for Windows

For information on configuring Apache to run other programming languages such as PHP, Python, and Ruby, please see the following links:
PHP for Windows

Python for Windows

Ruby for Windows

Installing Perl
Perl needs to be downloaded and installed before continuing. Download the latest version of perl from

http://www.activestate.com/activeperl/

http://www.activestate.com/store/activeperl/download. You can leave the registration form blank and just hit continue to proceed. Download the windows msi installer. Run the installer. The areas of interest in the installer are the install location. If you are only running Perl on Windows machines, you can use the default location. If you also have Perl programs running on Linux or Mac OS X, you may want to change the install location to C:\usr. This will allow you to maintain portability in your programs. You can also check the box so that Perl gets added to the path, and check the box to create the perl file extension association. After the installer completes, you now have Perl on your machine.
Configuring Perl CGI in Apache
The next step is to use EditRocket to open the httpd.conf apache configuration file located in the apache install directory in the conf directory. Search the httpd.conf file for the line

Options Indexes FollowSymLinks

Add ExecCGI to this line. The line should now look like the following:

Options Indexes FollowSymLinks ExecCGI

Next, search for the following:

#AddHandler cgi-script .cgi

Uncomment this line by removing the # in front of the line, and add a .pl to the end of the line. The new line should look like this:

AddHandler cgi-script .cgi .pl

Now, the apache web server needs to be restarted. You can do this either via the Apache service located in the services control panel or via the Start -> All Programs -> Apache . . . -> Control Apache Server menu option. Once apache is restarted, you can run a test page to make sure everything is working correctly.
Running a test Perl CGI script
You can create a new Perl test page in EditRocket by selecting File - New From Template - Perl - Sample Web Page. This will bring up the following in a new editor tab:
#!/usr/bin/perl
print "Content-type: text/html; charset=iso-8859-1\n\n";
print "<phtml>";
print "<body>";
print "Test Page";
print "</body>";
print "</html>";
				
Make sure to change the !#/usr/bin/perl to the location that Perl is installed on your machine. By default, it would be #!/perl/bin/perl The new file should look like the following:
#!/perl/bin/perl
print "Content-type: text/html; charset=iso-8859-1\n\n";
print "<phtml>";
print "<body>";
print "Test Page";
print "</body>";
print "</html>";
				
You can now save this file as test.pl to the htdocs directory under your apache installation directory. You can access the test.pl page by entering the URL of your local apache server in a web browser. If you are running apache on a port other than port 80, make sure to include :port_number after the localhost:

http://localhost/test.pl

image24.wmf

image25.png

image26.png

image27.png

image1.png

image28.gif

image2.png

image29.gif

image30.gif

image31.gif

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.jpeg

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.wmf

Highest score (default)

image22.png

image23.png

